184 P91

NMR STUDIES OF TETRABORANE(10) AND 2,4-ETHANOTETRABORANE(10)

Mark A. Fox and <u>Robert Greatrex</u> School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K.

The unusual splittings observed in the ^{11}B NMR resonances of the hinge boron atoms B(1) and B(3) in tetraborane(10), B_4H_{10} 1, and in the "basket" derivative 2,4-ethanotetraborane(10), 2,4-(CH₂CH₂)B₄H₈ 2, are shown conclusively to arise from long-range couplings to the non-adjacent bridge protons. The 1H resonances from the *exo* and *endo* protons attached to the wing boron atoms B(2) and B(4) in 1 are assigned unambiguously by a comparison of the 2D 1H - 1H { ^{11}B } COSY spectra of 1 and 2. The volatile side products obtained in the synthesis of 2 by the hot-cold reaction of B_4H_{10} and H_2C =CH₂ are shown to be 2-Et-2,4- μ -(CH₂CH₂)B₄H₇ 3, 2,4-Et₂-2,4- μ -(CH₂CH₂)B₄H₆ 4 and BEt₃.

$$\mathsf{Et} \overset{2}{=} \underbrace{\mathsf{Et}}^{3} \overset{3}{=} \mathsf{Et}$$